205 research outputs found

    A Tertiary Twist to the Transglutaminase Tale

    Get PDF
    A novel structure shows tissue transglutaminase in its catalytically active form, revealing the mode of action of this crosslinking enzyme and facilitating the development of specific inhibitors for use in various diseases in which transglutaminases are implicated

    A New Type of Metal Recognition by Human T Cells: Contact Residues for Peptide-independent Bridging of T Cell Receptor and Major Histocompatibility Complex by Nickel

    Get PDF
    In spite of high frequencies of metal allergies, the structural basis for major histocompatibility complex (MHC)-restricted metal recognition is among the unanswered questions in the field of T cell activation. For the human T cell clone SE9, we have identified potential Ni contact sites in the T cell receptor (TCR) and the restricting human histocompatibility leukocyte antigen (HLA)-DR structure. The specificity of this HLA-DR–promiscuous VA22/VB17+ TCR is primarily harbored in its α chain. Ni reactivity is neither dependent on protein processing in antigen-presenting cells nor affected by the nature of HLA-DR–associated peptides. However, SE9 activation by Ni crucially depends on Tyr29 in CDR1α, an N-nucleotide–encoded Tyr94 in CDR3α, and a conserved His81 in the HLA-DR β chain. These data indicate that labile, nonactivating complexes between the SE9 TCR and most HLA-DR/peptide conjugates might supply sterically optimized coordination sites for Ni ions, three of which were identified in this study. In such complexes Ni may effectively bridge the TCR α chain to His81 of most DR molecules. Thus, in analogy to superantigens, Ni may directly link TCR and MHC in a peptide-independent manner. However, unlike superantigens, Ni requires idiotypic, i.e., CDR3α-determined TCR amino acids. This new type of TCR–MHC linkage might explain the high frequency of Ni-reactive T cells in the human population

    Peripheral Blood Immune Cell Composition After Autologous MSC Infusion in Kidney Transplantation Recipients

    Get PDF
    Tacrolimus is the backbone of immunosuppressive agents to prevent transplant rejection. Paradoxically, tacrolimus is nephrotoxic, causing irreversible tubulointerstitial damage. Therefore, infusion of mesenchymal stromal cells (MSC) 6 and 7 weeks post-transplantation was assessed to facilitate withdrawal of tacrolimus in the randomized phase II TRITON trial. Here, we performed detailed analysis of the peripheral blood immune composition using mass cytometry to assess potential effects of MSC therapy on the immune system. We developed two metal-conjugated antibody panels containing 40 antibodies each. PBMC samples from 21 MSC-treated patients and 13 controls, obtained pre-transplant and at 24 and 52 weeks post-transplantation, were analyzed. In the MSC group at 24 weeks, 17 CD4+ T cell clusters were increased of which 14 Th2-like clusters and three Th1/Th2-like clusters, as well as CD4+FoxP3+ Tregs. Additionally, five B cell clusters were increased, representing either class switched memory B cells or proliferating B cells. At 52 weeks, CCR7+CD38+ mature B cells were decreased. Finally, eight Tc1 (effector) memory cytotoxic T cell clusters were increased. Our work provides a comprehensive account of the peripheral blood immune cell composition in kidney transplant recipients after MSC therapy and tacrolimus withdrawal. These results may help improving therapeutic strategies using MSCs with the aim to reduce the use of calcineurin inhibitors. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02057965.</p

    Comparing league formats with respect to match importance in Belgian football

    Get PDF
    Recently, most clubs in the highest Belgian football division have become convinced that the format of their league should be changed. Moreover, the TV station that broadcasts the league is pleading for a more attractive competition. However, the clubs have not been able to agree on a new league format, mainly because they have conflicting interests. In this paper, we compare the current league format, and three other formats that have been considered by the Royal Belgian Football Association. We simulate the course of each of these league formats, based on historical match results. We assume that the attractiveness of a format is determined by the importance of its games; our importance measure for a game is based on the number of teams for which this game can be decisive to reach a given goal. Furthermore, we provide an overview of how each league format aligns with the expectations and interests of each type of club

    Specificity of Tissue Transglutaminase Explains Cereal Toxicity in Celiac Disease

    Get PDF
    Celiac disease is caused by a selective lack of T cell tolerance for gluten. It is known that the enzyme tissue transglutaminase (tTG) is involved in the generation of T cell stimulatory gluten peptides through deamidation of glutamine, the most abundant amino acid in gluten. Only particular glutamine residues, however, are modified by tTG. Here we provide evidence that the spacing between glutamine and proline, the second most abundant amino acid in gluten, plays an essential role in the specificity of deamidation. On the basis of this, algorithms were designed and used to successfully predict novel T cell stimulatory peptides in gluten. Strikingly, these algorithms identified many similar peptides in the gluten-like hordeins from barley and secalins from rye but not in the avenins from oats. The avenins contain significantly lower percentages of proline residues, which offers a likely explanation for the lack of toxicity of oats. Thus, the unique amino acid composition of gluten and related proteins in barley and rye favors the generation of toxic T cell stimulatory gluten peptides by tTG. This provides a rationale for the observation that celiac disease patients are intolerant to these cereal proteins but not to other common food proteins

    Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity

    Get PDF
    Celiac disease (CD) affects a growing number of individuals worldwide. To elucidate the causes for this increase, future multidisciplinary collaboration is key to understanding the interactions between immunoreactive components in gluten-containing cereals and the human gastrointestinal tract and immune system and to devise strategies for CD prevention and treatment beyond the gluten-free diet. During the last meetings, the Working Group on Prolamin Analysis and Toxicity (Prolamin Working Group, PWG) discussed recent progress in the field together with key stakeholders from celiac disease societies, academia, industry and regulatory bodies. Based on the current state of knowledge, this perspective from the PWG members provides recommendations regarding clinical, analytical and legal aspects of CD. The selected key topics that require future multidisciplinary collaborative efforts in the clinical field are to collect robust data on the increasing prevalence of CD, to evaluate what is special about gluten-specific T cells, to study their kinetics and transcriptomics and to put some attention to the identification of the environmental agents that facilitate the breaking of tolerance to gluten. In the field of gluten analysis, the key topics are the precise assessment of gluten immunoreactive components in wheat, rye and barley to understand how these are affected by genetic and environmental factors, the comparison of different methods for compliance monitoring of gluten-free products and the development of improved reference materials for gluten analysis

    Statement of the Prolamin Working Group on the Determination of Gluten in Fermented Foods Containing Partially Hydrolyzed Gluten

    Get PDF
    On August 12, 2020, the U.S. Food and Drug Administration (FDA) has finalized a rule related to gluten-free labeling for foods containing fermented, hydrolyzed ingredients. The FDA believes that there is no scientifically valid analytical method e ective for determining gluten in fermented or hydrolyzed foods. In the absence of an analytical method, the FDA has decided to evaluate gluten-free claims on these foods based only on evidence that the food or ingredient used is gluten-free before fermentation or hydrolysis. For example, barley-based beers from which gluten is removed during brewing using special filtration, adsorption and/or enzymatic treatment are therefore excluded from bearing a gluten-free label. The Prolamin Working Group (PWG) acknowledges that the FDA rule is a regulatory act and might have to take into consideration several aspects other than scientific evidence, including risk assessment. Nevertheless, the PWG thinks that science has to be the most important driver for regulatory acts in risk management.Fil: Scherf, Katharina Anne. Karlsruher Institut Für Technologie; AlemaniaFil: Catassi, Carlo. Università Politecnica Delle Marche; ItaliaFil: Chirdo, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Ciclitira, Paul J.. University of East Anglia; Reino UnidoFil: Feighery, Conleth Francis. Universidad de Dublin; IrlandaFil: Gianfrani, Carmen. Institute of Biochemistry and Cell Biology; ItaliaFil: Koning, Frits. Leiden University; Países BajosFil: Lundin, Knut E. A.. University of Oslo; NoruegaFil: Masci, Stefania. No especifíca;Fil: Schuppan, Detlef. No especifíca;Fil: Smulders, Marinus J. M.. Wageningen University and Research; Países BajosFil: Tranquet, Olivier. No especifíca;Fil: Troncone, Riccardo. University Federico II; ItaliaFil: Koehler, Peter. No especifíca

    Statement of the Prolamin Working Group on the Determination of Gluten in Fermented Foods Containing Partially Hydrolyzed Gluten

    Get PDF
    On August 12, 2020, the U.S. Food and Drug Administration (FDA) has finalized a rule related to gluten-free labeling for foods containing fermented, hydrolyzed ingredients. The FDA believes that there is no scientifically valid analytical method effective for determining gluten in fermented or hydrolyzed foods. In the absence of an analytical method, the FDA has decided to evaluate gluten-free claims on these foods based only on evidence that the food or ingredient used is gluten-free before fermentation or hydrolysis. For example, barley-based beers from which gluten is removed during brewing using special filtration, adsorption and/or enzymatic treatment are therefore excluded from bearing a gluten-free label

    Identification of a unique intervillous cellular signature in chronic histiocytic intervillositis

    Get PDF
    Introduction: Chronic histiocytic intervillositis (CHI) is a rare histopathological lesion in the placenta characterized by an infiltrate of CD68+ cells in the intervillous space. CHI is associated with adverse pregnancy outcomes such as miscarriage, fetal growth restriction, and (late) intrauterine fetal death. The adverse pregnancy outcomes and a variable recurrence rate of 25–100% underline its clinical relevance. The pathophysiologic mechanism of CHI is unclear, but it appears to be immunologically driven. The aim of this study was to obtain a better understanding of the phenotype of the cellular infiltrate in CHI. Method: We used imaging mass cytometry to achieve in-depth visualization of the intervillous maternal immune cells and investigated their spatial orientation in situ in relation to the fetal syncytiotrophoblast. Results: We found three phenotypically distinct CD68+HLA-DR+CD38+ cell clusters that were unique for CHI. Additionally, syncytiotrophoblast cells in the vicinity of these CD68+HLA-DR+CD38+ cells showed decreased expression of the immunosuppressive enzyme CD39. Discussion: The current results provide novel insight into the phenotype of CD68+ cells in CHI. The identification of unique CD68+ cell clusters will allow more detailed analysis of their function and could result in novel therapeutic targets for CHI
    corecore